為了簡化討論,我們先把時間放在一邊。我們可以把空間視為某種可以扭曲、振動的彈性介質,因此它可以傳播波。自1916年起,愛因斯坦就開始嘗試證明他的廣義相對論方程包含一個解,這個解能夠表征引力波的傳播。然而,廣義相對論的數學之美與其方程的復雜性不分伯仲。這些方程的一個特點就是它們是非線性的。所謂的非線性,指的是一個系統產生的反應與它所受的刺激并不成正比。正如面對這種問題時研究者常做的那樣,愛因斯坦決定先考慮簡化后的情況。他把引力波視為對初始的“平坦”時空的微調——即攝動。如預料的一樣,他計算出了幾種不同類型的引力場振動,而它們均以光速傳播。但是他很快就開始懷疑,這些解在物理上是否真實存在。一個疑點與引力波的雙重性質有關:引力波既是幾何學的,是空(時)間的波動;也是物理學的,是引力場的特征。因此,作為一種自然界中存在的波,引力波的振幅應該能夠和一些物理量聯系在一起,比如速度、輻射功率等等。在愛因斯坦解出的6種引力波里(用現代物理術語來講就是6種偏振模式),只有兩種既能傳遞能量又以光速傳播。這些波也是橫波,如同電磁波一樣,也就是說它們只在與傳播方向垂直的平面上振動。與此相反,聲波是縱波,會在傳播的方向上壓縮空氣。而愛因斯坦得到的其他4個偏振解并不傳輸能量,傳播速度也是隨機的。實際上這是個在當時未能被理解的數學問題,問題出在了坐標系的選擇上。事實上,相對性原理規定,物理量的值并不隨坐標系的選取而發生變化。愛因斯坦選擇的坐標系并不完美,用它算出的偏振模式在廣義相對論的框架下不是真實存在的。但是,現在研究其他引力理論的物理學家發現,這些偏振解中的某幾個具有物理意義。如果能觀測到這些偏振模式的話,將有劃時代的意義,這能讓我們測試超越廣義相對論的物理理論。令人琢磨不透的坐標系性質,加上方程的非線性,不僅讓涉及廣義相對論的物理問題計算起來極為困難,還讓結果難以理解。這就是物理學家在20世紀60年代以前都未能理解黑洞視界的原因。1936年左右,愛因斯坦也一度相信自己和納森·羅森(Nathan Rosen,愛因斯坦在普林斯頓高等研究院的助手)證明了引力波并不存在。而這個結論與愛因斯坦先前的工作是完全矛盾的。引力波輸送的能量以及它與物質系統的相互作用,這些問題看似容易,但實際上非常復雜,以至于物理學家一直在研究這些問題,經過了幾十年才能得出初步結論。作者:法國薩瓦大學粒子物理實驗室教授、《環球科學》雜志特約專家達米爾布斯庫里克(Damir Buskulic),法國圖爾大學數學及理論物理實驗室副教授、《環球科學》雜志特約專家路易克維蘭(Loc Villain)轉載請注明來自“科普中國”。