從航海到攀巖,從建筑到機械,許多活動都離不開給繩索打結。然而,結有很多不同的種類,有的繩結比其他的更牢固。比如經驗老道的水手知道當要把一張床單固定在前桅上時該打什么結,要把船拴在樁子上時又該打什么結。



○ 圖片來源:Wikipedia Commons


那么,為什么有的繩結更牢固,而有的卻很容易散開呢?


這是一個至今仍未得到很好解答的問題。最近,麻省理工學院的兩位數學家和兩位工程師共同開發了一個數學模型,他們根據繩結的交叉數量、繩結被拉緊時扭結的方向等幾個關鍵的拓撲屬性,預測出了不同繩結的機械穩定性。


他們發現,這些細微的參數差別在很大程度上決定了繩結是否牢固。在模型和實驗中,他們利用變色纖維的不同部位在受到不同應力和壓力時所呈現出的顏色差異,來研究兩個幾乎相同的繩結究竟哪個更牢固。過去我們只能憑經驗來判斷怎樣的繩結最牢,而新的模型終于可以給出背后的理論原因。


研究人員將這一研究結果發表在了近期的《科學》雜志上。


1、壓力的顏色


2018年,工程師Mathias Kolle和他的團隊設計出了會隨著應力或壓力變化而改變顏色的可拉伸纖維。當拉動這樣一根纖維時,它的顏色會從彩虹的一種顏色變成另一種顏色,尤其是在受到壓力和應力最大的地方。


○ 反手結 | 圖片來源:MIT News


一直以來,繩結也是數學家所感興趣的課題,數學中的一個分支領域——紐結理論——就是專門從拓撲學的角度研究這些扭結。在紐結理論中,數學家用數學用語來描述扭結,以及它們在維持其拓撲結構的同時可以被扭曲或變形成的所有幾何形狀。


對于數學家來說,他們無需關心構成扭結的材料是什么,也不關心任何與力學有關的問題,他們只從數學的角度出發,將它當成扭結來研究。因此在新的研究中,數學家J?rn Dunkel和Kolle聯手在數學模型之上增加一些力學考慮,得出了一個可以理解扭結穩定性的模型。


2、意面物理


在研究中,他們先將變色纖維編織成各種各樣的扭結,比如三葉結、八字結等等,他們會拍下每一根纖維的樣子,記錄下纖維顏色的改變,以及當纖維被拉緊時施加在纖維上的力。利用這些實驗數據,他們校準了Dunkel的團隊先前一個用來描述意大利面的模型。在那個模型中,Dunkel和論文的第一作者Vishal Patil將意面或者其他的柔軟繩索視為一連串小的、分散的、用彈簧相連的珠子。每個彈簧彎曲和變形的方式可以根據施加在每個彈簧上的力來計算。


此前,Kolle的學生Joseph Sandt為他們的變色纖維繪制了一幅彩色圖譜,描繪了這種纖維在不同壓力值下所呈現的顏色。數學家將這些色彩數據整合到他們的意面模型中,然后用這個修正過的模型來模擬用實際纖維打成的繩結。當他們將實際的繩結與模擬的繩結進行對比時,得到了相同的顏色模式,這表明這一模型準確地模擬了繩結中的應力分布。


○ 實驗(上)和模擬(下)中的變色纖維 | 圖片來源:Patil et al. / Science


在此基礎上,他們接著模擬了更加復雜的繩結,注意到哪些繩結承受的壓力更大,因此比其他繩結更結實。一旦根據相對強度對繩結進行了分類,他們就開始尋找某些繩結比其他繩結更強的原因。他們為一些特殊的繩結繪制了簡單的圖表。


每個扭結圖都描繪了兩股繩在被拉緊之前打結的模式。圖中標注了扭結被拉緊時每一股繩索的方向、每一股的交叉,以及隨著繩結收緊時每一股的旋轉方向。


3、牢固的扭結


通過比較不同強度的繩結圖表,研究人員能夠識別出一般的“計數規則”,即決定繩結穩定性的特征。基本上,如果一個結有更多的交叉和更多的“扭轉波動”即繩索的一段到另一段在旋轉方向上發生的變化),它就會更牢固


例如,如果一個纖維段在一個交叉之后向左旋轉,而在旁邊相鄰的交叉后向右旋轉時,這就會產生扭轉波動,在拉緊繩索時抵消了摩擦,從而增加了扭結的穩定性。然而,如果一個線段在兩個相鄰的交叉點上朝相同的方向旋轉,則不會出現扭轉波動,繩索就更有可能旋轉和滑動,導致形成的扭結就沒有那么牢固。


他們還發現,如果一個扭結含有更多的“循環”,那么它也可以變得更牢。在這里,“循環”的意思是扭結中存在的兩股平行的線在相反的方向相互纏繞,就像一個循環一樣。


○ 縮帆結 | 圖片來源:MIT News


通過總結這些簡單的計數規則,研究人員終于能夠解釋為什么縮帆結比外平行結更牢。雖然這兩個扭結看上去幾乎相同,但縮帆結的扭轉波動數更大,因此它有更穩定的結構。


如果說過去我們只能憑經驗為不同的場景挑選出最合適的扭結,現在我們可以通過科學的分析方法來得出答案了。


參考來源:
http://news.mit.edu/2020/model-how-strong-knot-0102
10.1126/science.aaz0135


新的數學模型揭示,如何才能打出最牢的結

圖文簡介

捆綁不憑經驗,憑數學。

  • 來源: 原理
  • 上傳時間:2020-01-17